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NUMBER GAMES
The best way to get a handle on this problem, in my opinion, is to try a bunch of examples. 

You might have noticed that parity, or evenness and oddness, has a role to play.

DIMENSIONS OF THE TABLE CORNER THE BALL GOES IN

Odd by Odd Top Right
Odd by Even Bottom Right
Even by Odd Top Left
Even by Even Varies…

The “even by even” case seems stranger, but it
can be dealt with by a simple observation: a
2 by 6 table is identical to a 1 by 3 table
(seen from a closer vantage point, if you like).
In general, whenever you have a table with
two even numbers as its dimensions, you can
divide them both by 2 until at least one of
them is no longer even, and you haven’t
changed the nature of the table. 

We can predict, according to this pattern, where the ball will wind up in the big tables:
26 by 47 - Top Left
35 by 99 - Top Right
501 by 998 - Bottom Right
600 by 10,000 - Bottom Right, because 600 by 10,000 is really just a scale model of a 3 by 50 table.

Now the real question: why does parity
explain the path of the billiard balls? 
I want to o�er two explanations, one
elegant, one illuminating. 

First, the elegant
explanation. For any table,
draw it on a grid – or
lattice, as we sometimes say
– and colour the grid points
in a checker-board pattern. 

Notice anything? The path
the billiard ball takes can’t
change from blue points to
red points. That means we
only need to figure out which
of the four corners will be
blue, or whatever colour
matches the bottom left
corner. The colour of the
corners, as you can check,
depends only on the parity of
the dimensions of the table.

So that’s the elegant idea,
and it’s easy for it to go
by quickly. Here’s another
take. Imagine the ball
rolling toward the end of
the table, and instead of
bouncing o�, imagine it
passing “through the
looking glass,” into a
mirror image of the
existing table. 

In this case, using a
3 by 4 table, we can
put 4 of them end
to end vertically
and 3 end to end
horizontally.
Colouring the
corners of the
original table to
keep track, I can see
that the mirror
image straight-line
path of the ball
ends up in the
bottom right corner. 

What matters here? Only the parity of how
many tables I had to stack to the right and
how many I had to stack up. Evenness and
oddness, once again, explains everything.

Then it bounces again, into a
mirror image. Keep expanding
the mirror images, and we can
image our ball on a straight
line path. Not only that, its
journey through these mirror
image tables is precisely a mirror
image of its real path. In
particular, if we keep track of the
corner, we can still predict
correctly where it will end up. 

There are some details to work out in both these
arguments, and I encourage doing so. Parity is
strangely common in mathematics and in
mathematical puzzles, and it is worth getting to
know, for its simplicity and its power.


